• |本期目錄/Table of Contents|

    [1]李西振,管典安.調和擬共形Bloch函數的性質[J].廈門理工學院學報,2020,(5):93-96.[doi:1019697/jcnki16734432202005015]
     LI Xizhen,GUAN Dian an.Some Properties of Harmonic Quasiconformal BlochType Mapping[J].Journal of JOURNAL OF XIAMEN,2020,(5):93-96.[doi:1019697/jcnki16734432202005015]
    點擊復制

    調和擬共形Bloch函數的性質(PDF/HTML)
    分享到:

    《廈門理工學院學報》[ISSN:1673-4432/CN:35-1289/Z]

    卷:
    期數:
    2020年第5期
    頁碼:
    93-96
    欄目:
    應用數理科學
    出版日期:
    2020-10-30

    文章信息/Info

    Title:
    Some Properties of Harmonic Quasiconformal BlochType Mapping
    文章編號:
    16734432(2020)05009304
    作者:
    李西振管典安
    廈門工學院計算機與人工智能學院, 福建 廈門 361021
    Author(s):
    LI XizhenGUAN Dian an
    College of Computer and Artificial Intelligence,Xiamen Institute of Technology,Xiamen 361021,China
    關鍵詞:
    調和擬共形函數Bloch型函數界限估計
    Keywords:
    harmonic quasiconformal mappingBlochtype functionbound estimate
    分類號:
    O17455
    DOI:
    1019697/jcnki16734432202005015
    文獻標志碼:
    A
    摘要:
    將調和Bloch型函數的定義應用到調和擬共形函數,在給出調和擬共形Bloch函數定義的基礎上,分析調和擬共形函數線性和復合性質。研究提出調和擬共形Bloch型函數的判別法則, 并給出它的一個判定定理以及β(f)的界限估計。
    Abstract:
    We apply the definition of harmonic Blochtype functions to harmonic quasiconformal functions,and obtain the definition of harmonic quasiconformal Blochtype functions.By establishing the linear and composite properties of harmonic quasiconformal mapping,we give a criterion of them and a bound estimate of β(f).

    參考文獻/References:

    [1] POMMERENKE C.On Bloch functions[J].Journal of London Mathematical Society,1970,2:689695. [2] ANDERSON J M,CLUNIE J,POMMERENKE C.On Bloch functions and normal functions[J].Journal of Reine Angew Mathematical,1974,270:1237. [3] ZHU K.Operator theory in function spaces[M].New York:Marcel Dekker Inc, 1990:120. [4] PAVLOVIC M.On the HollandWalsh characterization of Bloch functions[J].Proc Edinb Mathematical Society,2008,51(2):439441. [5] EFRAIMIDIS I ,GAONA J ,HERNNDEZ R.On harmonic Blochtype mappings[J].Complex Var Elliptic,2017,62(8):1 0811 092. [6] LEWY H.On the nonvanishing of the Jacobian in certain onetoone mappings[J].Bulletin of the American Mathematical Society,1936,42(10):689693. [7] AHLFORS L V,EARLE C J.Lectures on quasiconformal mappings[M].2nd ed.[S.l.]:American Mathematical Society,1966:125. [8] DANIKAS N.Some Banach spaces of analytic functions,function spaces and complex analysis[J].University of Joensuu Department of Mathematical Rep,1997,2:935. [9] POMMERENKE C.Boundary behaviour of conformal maps[M].Berlin:SpringerVerlag,1992:115. [10] SEIDEL J ,WALSH L.On the derivatives of functions analytic in the unit circle and their radii of univalence and of pvalence[J].Transactions American Mathematical Society,1942,52:128216. [11] HERNNDEZ R,MARTIN M J.PreSchwarzian and Schwarzian derivatives of harmonic mappings[J].Journal of Geometric Analysis,2015,25(1):6491. [12] BEARDON A,MINDA D.The hyperbolic metric and geometric function theory[J].Quasiconformal Mappings and Their Applications,2007:956. [13] CHEN S ,PONNUSAMY S.John disks and Kquasiconformal harmonic mappings[J].Journal of Geometric Analysis,2017,27(2):1 4681 488.

    相似文獻/References:

    備注/Memo

    備注/Memo:
    收稿日期:20200820修回日期:20201020 基金項目:福建省中青年教師教育科研項目(JAT190959) 廈門工學院校級科研項目(KYT2019022) 通信作者:李西振,男,助教,碩士,研究方向為函數論,Email:741296642@qq.com。
    更新日期/Last Update:
    大佬彩票平台